

Auditory/acoustic feedback to optimise the boat motion

Dr. Nina Schaffert & Prof. Dr. Klaus Mattes
University of Hamburg

WORLD ROWING YOUTH COACHES CONFERENCE 24-27 October 2013 Hamburg, Germany

Movement & Sound

- · causal relationship
- · sound is the acoustic consequence of kinetic

Background

Sport Science

- elite rowers rely on sport specific sounds of the boats forward motion (Lippens, 2005)
- provides support to the process of motor learning (Effenberg et al., 2009)

Neuroscience

- rich physiological connection between auditory & motor system
- acoustic information = "ideal synchronisation device"
- drives rhythmic organised motor behavior in humans (Thaut et al., 2005)
- enables listener to anticipate future occuring events (Zatorre et al., 2007)

Acoustic Stimuli/Information

Characteristics

- direct effect on the motor system
- inherent time structure offers precise information about movement processes
- supports the timing subliminally
- · continuous & anticipatory time reference

Auditory sensory system

- fast and precise processor of temporal information
- guides the focus of attention reliably
- simultan processing of multiple information streams

Feedback training in racing rowing

- experiences using visual feedback in on-water rowing training
 - for low stroke frequencies acceptable

Drawbacks of visual....

- posture of the head, focus (Mattes, 2012)
- visual observation is limited to the temporal resolution
- the effectiveness decreases as the boat velocity and the stroke frequency increase (>30 strokes per minute)

Sonification in racing rowing

Sonification of the boat motion aims to...

- · guide athletes focus of attention
- enhance the feeling for the boat rhythm in different
 - training intensities (boat velocities and stroke rates)
 - boat categories (big and small boats)
- guideline for on-water training and rowing races
- · final aim: increasing the mean boat velocity

Sonification

- synthetic transformation of data into sound systematically (Hermann, 2008)
- requirements
 - mapping the data objectively
 - precise definition
 - reproducibility
- sonification procedures
 - auralisation (whale sounds)
 - parameter mapping (algorithm)
 - model based (modelling)

Investigations

Participants

- Sighted Athletes
 - seniors & juniors (N=47)
 - 12 boats, 3 on-water training sessions
- Adaptive Athletes (N=6)
 - 2 visual impaired & 2 physically handicapped
 - Coxed Four (LTA4+), 2 weeks, 7 training sessions

Measuring system

- Sofirow (BeSB GmbH Berlin & Uni Hamburg)
 - a_{boat} (MEMS acceleration sensor (125 Hz))
 - v_{boat} (4-Hz-GPS)
 - Parameter Sonification

Measurement system: Sofirow

 BeSB GmbH Berlin (acoustic engineers) and University of Hamburg

- a_{boat} (MEMS acceleration sensor (125 Hz))
- v_{boat} (4-Hz-GPS)

Statistical Analysis

Data Capture

- Comparison of sections with and without alternately
 - ANOVA with repeated measures (SPSS 16.0)
 - 30 rowing cycles each
 - comparable stroke rate (±0.5 strokes per minute)

Questionnaire

- perception & acceptance of acoustic feedback (AF) (standardised questionnaires)
 - all squad levels
 - Athletes (N=54) & Coaches (N=14)

Sonified boat motion JM8+

Sonified boat motion M4x

Trainingslager Ratzeburg M4x

Results Questionnaire

- · High acceptance of sonification among athletes and coaches
- · Intuitive understanding
- · Athletes' statement

"focussed improvement of the weak points in the movement" "keeping the tone as constant as possible during recovery"

- · Coaches' statement
 - ...smoother movement with the sound"
 - "...more clearly and better"

Conclusions

- enhances the perception for movement execution
- · synchronises the crew with increase in boat velocity
- guides attention to characteristic phases within the movement
- reduces intracyclic interruptions in the boat acceleration trace
- contributes to technique training in elite rowing

Further Developments

 Conception, development and field-testing of a measuring and analysis system for on-water rowing training and rowing races

M. ACCROW BOSS. CO

- Tested with the German National Rowing Team
 - Training and Training camps
 - regional and international regattas
 - heats and finals of the Juniors World Championships from 2009 until the present
 - preparation for the Olympics

Biomechanical Diagnostic in racing boats

- Mobile Measuring and Training System 2010 (Institute FES)
 - Advantages:
 - complexity in diagnostic evidence
 - feedback training in racing boats
 - Drawbacks:
 - · high expenditure of time and staff
 - requires measuring experts

System Requirements

- Easy-to-use and less time-consuming operation
 - Measuring process
 - Data analysis
- · Low mass, suitable for single scull boats
- Analysis parameters
 - Boat velocity, stroke rate, distance travelled per stroke
 - Number of rowing strokes, times for measured distances
- Applicable in rowing races
- Performance diagnostic, scientific studies
- Different standardised analysis modes

Accrow: Technical Data

- MEMS-acceleration Sensor:
 ±2 g Measuring Range, 50 Hz
 Sampling Rate, 1% Measuring
 Error
- GPS-Sensor: Position- up-date rate: 4 Hz
- Velocity: 0.1 m/s
- Power Supply:
- 5 V 32 V co-flow (accumulator)
- Data Storage: SD-Card
- Data Transfer: WLAN
- Dimension: 98 x 64 x 34 mm
- Mass (incl. Accu): 336g

www.accrow.de

Example 1: Race analysis 2000m Analysis referring to the distance, **Sub-sections GPS-measured** Absolute Values Number of strokes sr [1/min.] [s] 0-100m 21.2 40 4.73 7.1 21.2 0-250m 48.2 39.3 7.92 48.2 32 5.19 250-500m 48.3 29 36.4 5.18 8.54 96.5 500-750m 50 29 35.2 8.52 146.4 750-1000m 51.6 4.84 8.47 198 30 34.3 1000-1250m 249.1 1250-1500m 50.3 29 34.7 4.97 8.6 299.4 1500-1750m 49.7 29 34.8 5.03 8.66 349.1 1750-2000m 50.4 Total 399.5 236 35.5 5.01 8.46 2000

Accrow-Live

Notebook & Smartphone (iOS)

Online-Mode

Real-time visualisation of acceleration- and velocity trace of the rowing stroke

- Mean boat velocity [m/s]
- Mean velocity of the last 5 rowing strokes [m/s]
- Travelled distance (last stroke) [m]
- Stroke frequency [1/min]
- calculated 500-m-time velocity [min:ss]

Offline-Mode

Viewing the stored data retrospectively in "real-time"

Conclusions

Accrow's Characteristics

- easy-to-use and less time-consuming operation
- suitable for rowing races ond on-water training
- provision of data on the time, stroke and/or distance travelled
- access to all raw data
- easy data export via excel
- suitable for performance analysis and physiological field investigations in racing rowing

Conclusions

Analysis of on-water training

- precise planning and control of on-water training sessions
- effect analysis of the total method (endurance and technique training, crew formation and seating position)

Evaluation of rowing races

- total race (course and split times, mean boat velocity, stroke frequency, propulsion and their relationship)
- proportions of typical race phases
- Start analysis and optimising of different start variants

Rowing measuring and feedback systems

www.accrow.com